When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    The converse does not hold; not all Lebesgue-integrable functions are Riemann integrable. The Lebesgue–Vitali theorem does not imply that all type of discontinuities have the same weight on the obstruction that a real-valued bounded function be Riemann integrable on [a, b].

  3. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    A version holds for Fourier series as well: if is an integrable function on a bounded interval, then the Fourier coefficients ^ of tend to 0 as . This follows by extending f {\displaystyle f} by zero outside the interval, and then applying the version of the Riemann–Lebesgue lemma on the entire real line.

  4. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    In calculus and mathematical analysis the limits of integration (or bounds of integration) of the integral (). of a Riemann integrable function defined on a closed and bounded interval are the real numbers and , in which is called the lower limit and the upper limit.

  5. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    A bounded function, , is Riemann integrable on [,] if and only if the correspondent set of all essential discontinuities of first kind of has Lebesgue's measure zero. The case where E 1 = ∅ {\displaystyle E_{1}=\varnothing } correspond to the following well-known classical complementary situations of Riemann integrability of a bounded ...

  6. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    A number of general inequalities hold for Riemann-integrable functions defined on a closed and bounded interval [a, b] and can be generalized to other notions of integral (Lebesgue and Daniell). Upper and lower bounds. An integrable function f on [a, b], is necessarily bounded on that interval.

  7. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The Lebesgue criterion for integrability states that a bounded function is Riemann integrable if and only if the set of all discontinuities has measure zero. [5] Every countable subset of the real numbers - such as the rational numbers - has measure zero, so the above discussion shows that Thomae's function is Riemann integrable on any interval.

  8. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    The Riemann integral of a function defined over an arbitrary bounded n-dimensional set can be defined by extending that function to a function defined over a half-open rectangle whose values are zero outside the domain of the original function. Then the integral of the original function over the original domain is defined to be the integral of ...

  9. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral appears in the original formulation of F. Riesz's theorem which represents the dual space of the Banach space C[a,b] of continuous functions in an interval [a,b] as Riemann–Stieltjes integrals against functions of bounded variation. Later, that theorem was reformulated in terms of measures.