Search results
Results From The WOW.Com Content Network
This might seem to be a much stronger result than Liouville's theorem, but it is actually an easy corollary. If the image of f {\displaystyle f} is not dense, then there is a complex number w {\displaystyle w} and a real number r > 0 {\displaystyle r>0} such that the open disk centered at w {\displaystyle w} with radius r {\displaystyle r} has ...
In mathematics, Liouville's formula, also known as the Abel–Jacobi–Liouville identity, is an equation that expresses the determinant of a square-matrix solution of a first-order system of homogeneous linear differential equations in terms of the sum of the diagonal coefficients of the system.
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.
Liouville's theorem has various meanings, all mathematical results named after Joseph Liouville: In complex analysis, see Liouville's theorem (complex analysis) There is also a related theorem on harmonic functions; In conformal mappings, see Liouville's theorem (conformal mappings)
Liouville’s theorem is essentially statistical in nature, and it refers to the evolution in time of an ensemble of mechanical systems of identical properties but with different initial conditions. Each system is represented by a single point in phase space, and the theorem states that the average density of points in phase space is constant ...
For Liouville's equation in Euclidean space, see Liouville–Bratu–Gelfand equation. In differential geometry, Liouville's equation, named after Joseph Liouville, [1] [2] is the nonlinear partial differential equation satisfied by the conformal factor f of a metric f 2 (dx 2 + dy 2) on a surface of constant Gaussian curvature K: =, where ...
Liouville's theorem is sometimes presented as a theorem in differential Galois theory, but this is not strictly true. The theorem can be proved without any use of Galois theory . Furthermore, the Galois group of a simple antiderivative is either trivial (if no field extension is required to express it), or is simply the additive group of the ...
This is the original form of Liouville's theorem and can be derived from it. [3] A holomorphic elliptic function is bounded since it takes on all of its values on the fundamental domain which is compact. So it is constant by Liouville's theorem.