Search results
Results From The WOW.Com Content Network
Molecular physics is concerned with atomic processes in molecules, but it is additionally concerned with effects due to the molecular structure. Additionally to the electronic excitation states which are known from atoms, molecules are able to rotate and to vibrate. These rotations and vibrations are quantized; there are discrete energy levels.
Because atoms and molecules are said to be matter, it is natural to phrase the definition as: "ordinary matter is anything that is made of the same things that atoms and molecules are made of". (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and ...
Ubiquitousness and stability of atoms relies on their binding energy, which means that an atom has a lower energy than an unbound system of the nucleus and electrons. Where the temperature is much higher than ionization potential , the matter exists in the form of plasma —a gas of positively charged ions (possibly, bare nuclei) and electrons.
Molecules are the smallest particles into which a substance can be divided while maintaining the chemical properties of the substance. Each type of molecule corresponds to a specific chemical substance. A molecule is a composite of two or more atoms. Atoms are combined in a fixed proportion to form a molecule.
This is the case for most low-lying molecular energy states, and corresponds to transitions in the visible and ultraviolet regions of the electromagnetic spectrum. [1] [2] In addition to the electronic energy levels shared with atoms, molecules have additional quantized energy levels corresponding to vibrational and rotational states ...
If the electron absorbs a quantity of energy less than the binding energy, it will be transferred to an excited state. After a certain time, the electron in an excited state will "jump" (undergo a transition) to a lower state. In a neutral atom, the system will emit a photon of the difference in energy, since energy is conserved.
It is the force that binds electrons to atoms, and it holds molecules together. It is responsible for everyday phenomena like light , magnets , electricity , and friction . Electromagnetism fundamentally determines all macroscopic, and many atomic-level, properties of the chemical elements .
Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.