When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .

  3. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).

  4. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm. The ...

  5. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    Ptolemy's inequality holds more generally in any inner product space, [1] [9] and whenever it is true for a real normed vector space, that space must be an inner product space. [9] [10] For other types of metric space, the inequality may or may not be valid. A space in which it holds is called Ptolemaic.

  6. Weyl's inequality - Wikipedia

    en.wikipedia.org/wiki/Weyl's_inequality

    Let be Hermitian on inner product space with dimension , with spectrum ordered in ... Proof. By the min-max theorem, it suffices to show that any ...

  7. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    This inner product can expressed in terms of the norm by using ... [proof 1] although it is also a consequence of ... space is defined as (,), ...

  8. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    If a normal operator T on a finite-dimensional real [clarification needed] or complex Hilbert space (inner product space) H stabilizes a subspace V, then it also stabilizes its orthogonal complement V ⊥. (This statement is trivial in the case where T is self-adjoint.) Proof. Let P V be the orthogonal projection onto V.

  9. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    The quotient space of by the vector subspace is an inner product space with the inner product defined by +, + := (),,, which is well-defined due to the Cauchy–Schwarz inequality. The Cauchy completion of A / I {\displaystyle A/I} in the norm induced by this inner product is a Hilbert space, which we denote by H {\displaystyle H} .