Search results
Results From The WOW.Com Content Network
A bell-shaped function or simply 'bell curve' is a mathematical function having a characteristic "bell"-shaped curve. These functions are typically continuous or smooth, asymptotically approach zero for large negative/positive x, and have a single, unimodal maximum at small x. Hence, the integral of a bell-shaped function is typically a sigmoid ...
A normal distribution is sometimes informally called a bell curve. [8] However, many other distributions are bell-shaped (such as the Cauchy , Student's t , and logistic distributions). (For other names, see Naming .)
The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell".
The probability density function is symmetric, and its overall shape resembles the bell shape of a normally distributed variable with mean 0 and variance 1, except that it is a bit lower and wider. As the number of degrees of freedom grows, the t distribution approaches the normal distribution with mean 0 and variance 1.
A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function , which is defined by the formula: [ 1 ]
The reason for the choice of the number 21.06 is to bring about the following result: If the scores are normally distributed (i.e. they follow the "bell-shaped curve") then the normal equivalent score is 99 if the percentile rank of the raw score is 99; the normal equivalent score is 50 if the percentile rank of the raw score is 50;
Normal distributions are symmetrical, bell-shaped distributions that are useful in describing real-world data. The standard normal distribution, represented by Z , is the normal distribution having a mean of 0 and a standard deviation of 1.
An informal approach to testing normality is to compare a histogram of the sample data to a normal probability curve. The empirical distribution of the data (the histogram) should be bell-shaped and resemble the normal distribution. This might be difficult to see if the sample is small.