When.com Web Search

  1. Ads

    related to: non zero prime rings wholesale

Search results

  1. Results From The WOW.Com Content Network
  2. Prime ring - Wikipedia

    en.wikipedia.org/wiki/Prime_ring

    A ring R is prime if and only if the zero ideal {0} is a prime ideal in the noncommutative sense. This being the case, the equivalent conditions for prime ideals yield the following equivalent conditions for R to be a prime ring: For any two ideals A and B of R, AB = {0} implies A = {0} or B = {0}.

  3. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    The question of when this happens is rather subtle: for example, for the localization of k[x, y, z]/(x 2 + y 3 + z 5) at the prime ideal (x, y, z), both the local ring and its completion are UFDs, but in the apparently similar example of the localization of k[x, y, z]/(x 2 + y 3 + z 7) at the prime ideal (x, y, z) the local ring is a UFD but ...

  4. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    The ring of 2×2 matrices with integer entries does not satisfy the zero-product property: if = and = (), then = () = =, yet neither nor is zero. The ring of all functions: [,], from the unit interval to the real numbers, has nontrivial zero divisors: there are pairs of functions which are not identically equal to zero yet whose product is the ...

  5. Nilpotent - Wikipedia

    en.wikipedia.org/wiki/Nilpotent

    The prime ideals of the localized ring correspond exactly to those prime ideals of with =. [2] As every non-zero commutative ring has a maximal ideal, which is prime, every non-nilpotent x {\displaystyle x} is not contained in some prime ideal.

  6. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    The ring = of algebraic integers in a number field K is Noetherian, integrally closed, and of dimension one: to see the last property, observe that for any nonzero prime ideal I of R, R/I is a finite set, and recall that a finite integral domain is a field; so by (DD4) R is a Dedekind domain. As above, this includes all the examples considered ...

  7. Prime ideal - Wikipedia

    en.wikipedia.org/wiki/Prime_ideal

    In a commutative ring R with at least two elements, if every proper ideal is prime, then the ring is a field. (If the ideal (0) is prime, then the ring R is an integral domain. If q is any non-zero element of R and the ideal (q 2) is prime, then it contains q and then q is invertible.)