Search results
Results From The WOW.Com Content Network
In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet .
Stream ciphers, in contrast to the 'block' type, create an arbitrarily long stream of key material, which is combined with the plaintext bit-by-bit or character-by-character, somewhat like the one-time pad. In a stream cipher, the output stream is created based on a hidden internal state that changes as the cipher operates.
The affine cipher is a type of monoalphabetic substitution cipher, where each letter in an alphabet is mapped to its numeric equivalent, encrypted using a simple mathematical function, and converted back to a letter. The formula used means that each letter encrypts to one other letter, and back again, meaning the cipher is essentially a ...
ROT13 is a simple letter substitution cipher that replaces a letter with the 13th letter after it in the Latin alphabet. ROT13 is a special case of the Caesar cipher which was developed in ancient Rome, used by Julius Caesar in the 1st century BC. [1] An early entry on the Timeline of cryptography.
For example, in a Caesar cipher of shift 3, a would become D, b would become E, y would become B and so on. The Vigenère cipher has several Caesar ciphers in sequence with different shift values. To encrypt, a table of alphabets can be used, termed a tabula recta, Vigenère square or Vigenère table. It has the alphabet written out 26 times in ...
One-key MAC (OMAC) is a family of message authentication codes constructed from a block cipher much like the CBC-MAC algorithm. It may be used to provide assurance of the authenticity and, hence, the integrity of data. Two versions are defined: The original OMAC of February 2003, which is seldom used. [1] The preferred name is now "OMAC2". [2]
While solving a monoalphabetic substitution cipher is easy, solving even a simple code is difficult. Decrypting a coded message is a little like trying to translate a document written in a foreign language, with the task basically amounting to building up a "dictionary" of the codegroups and the plaintext words they represent.
Although ciphers can be confusion-only (substitution cipher, one-time pad) or diffusion-only (transposition cipher), any "reasonable" block cipher uses both confusion and diffusion. [2] These concepts are also important in the design of cryptographic hash functions , and pseudorandom number generators , where decorrelation of the generated ...