Search results
Results From The WOW.Com Content Network
Many differential screw configurations are possible. The micrometer adjuster pictured uses a nut sleeve with different inner and outer thread pitches to connect a screw on the adjusting rod end with threads inside the main barrel; as the thimble rotates the nut sleeve, the rod and barrel move relative to each other based on the differential between the threads.
This amplification allows a small difference in the sizes of two similar measured objects to correlate to a larger difference in the position of a micrometer's thimble. In some micrometers, even greater accuracy is obtained by using a differential screw adjuster to move the thimble in much smaller increments than a single thread would allow.
Micrometer can mean: Micrometer (device), used for accurate measurements by means of a calibrated screw; Micrometre, a millionth of a metre
English: Illustration of a micrometer caliper. The micrometer is showing a measurement of 7.145 mm ± 0.005 mm. Legend: Anvil: part that the spindle moves toward, and that the sample rests against; Spindle: moved by the thimble towards the anvil; Ratchet stop: limits applied pressure by slipping at a calibrated torque
The micrometre (Commonwealth English as used by the International Bureau of Weights and Measures; [1] SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, [2] is a unit of length in the International System of Units (SI) equalling 1 × 10 −6 metre (SI standard prefix "micro-" = 10 −6); that is, one millionth of a metre (or one thousandth of a ...
Activity diagrams [1] are graphical representations of workflows of stepwise activities and actions [2] with support for choice, iteration, and concurrency. In the Unified Modeling Language, activity diagrams are intended to model both computational and organizational processes (i.e., workflows), as well as the data flows intersecting with the related activities.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The reason why the form of the friction curve for liquid lubricated surfaces was later attributed to Stribeck – although both Thurston and Martens achieved their results considerably earlier – may be because Stribeck published his findings in the most important technical journal in Germany at that time, Zeitschrift des Vereins Deutscher ...