Search results
Results From The WOW.Com Content Network
NC = P problem The P vs NP problem is a major unsolved question in computer science that asks whether every problem whose solution can be quickly verified by a computer (NP) can also be quickly solved by a computer (P). This question has profound implications for fields such as cryptography, algorithm design, and computational theory.
[1]: 226 Since this function is generally difficult to compute exactly, and the running time for small inputs is usually not consequential, one commonly focuses on the behavior of the complexity when the input size increases—that is, the asymptotic behavior of the complexity. Therefore, the time complexity is commonly expressed using big O ...
English: Printable pdf version of C Programming Wikibook. This file was created with MediaWiki to LaTeX . The LaTeX source code is attached to the PDF file (see imprint).
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.
Computational complexity theory deals with how hard computations are, in quantitative terms, both with upper bounds (algorithms whose complexity in the worst cases, as use of computing resources, can be estimated), and from below (proofs that no procedure to carry out some task can be very fast).
Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).
Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource).
In theoretical computer science, and specifically computational complexity theory and circuit complexity, TC is a complexity class of decision problems that can be recognized by threshold circuits, which are Boolean circuits with AND, OR, and Majority gates.