Ads
related to: squirrel cage wind generator kit
Search results
Results From The WOW.Com Content Network
Squirrel-cage induction motors are very prevalent in industry, in sizes from below 1 kilowatt (1.3 hp) up to tens of megawatts (tens-of-thousand horsepower). They are simple, rugged, and self-starting, and maintain a reasonably constant speed from light load to full load, set by the frequency of the power supply and the number of poles of the ...
The effect is more pronounced in doubly-fed induction generators (DFIG), [3] which have two sets of powered magnetic windings, than in squirrel-cage induction generators which have only one. Synchronous generators may slip and become unstable, if the voltage of the stator winding goes below a certain threshold. [4]
This is useful for large variable speed wind turbines, because wind speed can change suddenly. When a gust of wind hits a wind turbine, the blades try to speed up, but a synchronous generator is locked to the speed of the power grid and cannot speed up. So large forces are developed in the hub, gearbox, and generator as the power grid pushes back.
[a] An induction motor's rotor can be either wound type or squirrel-cage type. Three-phase squirrel-cage induction motors are widely used as industrial drives because they are self-starting, reliable, and economical. Single-phase induction motors are used extensively for smaller loads, such as garbage disposals and stationary power tools.
Bars and rings of the damper (amortisseur) winding of an AC generator (General Electric, early 20th century). Note the gaps in the cage along the quadrature axes. The damper winding (also amortisseur winding [1]) is a squirrel-cage-like winding on the rotor of a typical synchronous electric machine. It is used to dampen the transient ...
A fully rated converter can either be an induction generator or a permanent magnet generator. Unlike the DFIG, the FRC can employ a squirrel cage rotor in the generator; an example of this is the Siemens SWT 3.6-107, which is termed the industry workhorse. [7] An example of a permanent magnet generator is the Siemens SWT-2.3-113. [8]