Search results
Results From The WOW.Com Content Network
graph with an example of steps in a failure mode and effects analysis. Failure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects.
Failure mode effects and criticality analysis (FMECA) is an extension of failure mode and effects analysis (FMEA).. FMEA is a bottom-up, inductive analytical method which may be performed at either the functional or piece-part level.
A process flow diagram (PFD) is a diagram commonly used in chemical and process engineering to indicate the general flow of plant processes and equipment. The PFD displays the relationship between major equipment of a plant facility and does not show minor details such as piping details and designations.
A copy of the Process Flow, indicating all steps and sequence in the fabrication process, including incoming components. PFMEA A copy of the Process Failure Mode and Effect Analysis , reviewed and signed off by supplier and customer. The PFMEA follows the Process Flow steps, and indicates "what could go wrong" during the fabrication and ...
A machine tool monitoring system is a flow of information and system processing in which the information selection, obtaining data, processing of information and decision making on the refined information are integrated. The aim of tool condition monitoring is to detect early the disturbances in the machining process and wear of machine tool ...
This Recommended Practice defines a process for using common modeling techniques to assess the safety of a system being put together. The first 30 pages of the document covers that process. The next 140 pages give an overview of the modeling techniques and how they should be applied. The last 160 pages give an example of the process in action.
A fault tree diagram. Fault tree analysis (FTA) is a type of failure analysis in which an undesired state of a system is examined. This analysis method is mainly used in safety engineering and reliability engineering to understand how systems can fail, to identify the best ways to reduce risk and to determine (or get a feeling for) event rates of a safety accident or a particular system level ...
Cutting speed may be defined as the rate at the workpiece surface, irrespective of the machining operation used. A cutting speed for mild steel of 100 ft/min is the same whether it is the speed of the cutter passing over the workpiece, such as in a turning operation, or the speed of the cutter moving past a workpiece, such as in a milling operation.