Search results
Results From The WOW.Com Content Network
A description of the projective geometry can be constructed in the geometric algebra using basic operations. For example, given two distinct points in RP n−1 represented by vectors a and b the line containing them is given by a ∧ b (or b ∧ a). Two lines intersect in a point if A ∧ B = 0 for their bivectors A and B. This point is given ...
Now (hr 2) 2 = (−1)(−1) = +1, and the biquaternion curve {exp θ(hr 2) : θ ∈ R} is a unit hyperbola in the plane {x + yr 2 : x, y ∈ R}. The spacetime transformations in the Lorentz group that lead to FitzGerald contractions and time dilation depend on a hyperbolic angle parameter. In the words of Ronald Shaw, "Bivectors are logarithms ...
The exponential map of the Earth as viewed from the north pole is the polar azimuthal equidistant projection in cartography. In Riemannian geometry, an exponential map is a map from a subset of a tangent space T p M of a Riemannian manifold (or pseudo-Riemannian manifold) M to M itself. The (pseudo) Riemannian metric determines a canonical ...
In mathematics, a biorthogonal system is a pair of indexed families of vectors ~ ~ such that ~, ~ =,, where and form a pair of topological vector spaces that are in duality, , is a bilinear mapping and , is the Kronecker delta.
Some r-vectors are scalars (r = 0), vectors (r = 1) and bivectors (r = 2). One may generate a finite-dimensional GA by choosing a unit pseudoscalar (I). The set of all vectors that satisfy = is a vector space. The geometric product of the vectors in this vector space then defines the GA, of which I is a member.
The differential assigns to each point a linear map from the tangent space to the real numbers. In this case, each tangent space is naturally identifiable with the real number line, and the linear map R → R {\displaystyle \mathbb {R} \to \mathbb {R} } in question is given by scaling by f ′ ( x 0 ) . {\displaystyle f'(x_{0}).}
The tangent vectors e 1 and e 2 of a frame on M define smooth functions from E with values in R 3, so each gives a 3-vector of functions and in particular de 1 is a 3-vector of 1-forms on E. The connection form is given by
The equations for x and y can be combined to give + = (+) [2] [3] or + = (). This equation shows that σ and τ are the real and imaginary parts of an analytic function of x+iy (with logarithmic branch points at the foci), which in turn proves (by appeal to the general theory of conformal mapping) (the Cauchy-Riemann equations) that these particular curves of σ and τ intersect at ...