When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    When working with coordinates in geometric algebra it is usual to write the basis vectors as (e 1, e 2, ...), a convention that will be used here. A vector in real two-dimensional space R 2 can be written a = a 1 e 1 + a 2 e 2, where a 1 and a 2 are real numbers, e 1 and e 2 are orthonormal basis vectors. The geometric product of two such ...

  3. Exponential map (Riemannian geometry) - Wikipedia

    en.wikipedia.org/wiki/Exponential_map...

    The exponential map of the Earth as viewed from the north pole is the polar azimuthal equidistant projection in cartography. In Riemannian geometry, an exponential map is a map from a subset of a tangent space T p M of a Riemannian manifold (or pseudo-Riemannian manifold) M to M itself. The (pseudo) Riemannian metric determines a canonical ...

  4. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    In mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately: B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v)

  5. Biorthogonal system - Wikipedia

    en.wikipedia.org/wiki/Biorthogonal_system

    In mathematics, a biorthogonal system is a pair of indexed families of vectors ~ ~ such that ~, ~ =,, where and form a pair of topological vector spaces that are in duality, , is a bilinear mapping and , is the Kronecker delta.

  6. Dual basis - Wikipedia

    en.wikipedia.org/wiki/Dual_basis

    In linear algebra, given a vector space with a basis of vectors indexed by an index set (the cardinality of is the dimension of ), the dual set of is a set of vectors in the dual space with the same index set such that and form a biorthogonal system.

  7. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  8. Universal geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Universal_geometric_algebra

    Some r-vectors are scalars (r = 0), vectors (r = 1) and bivectors (r = 2). One may generate a finite-dimensional GA by choosing a unit pseudoscalar (I). The set of all vectors that satisfy = is a vector space. The geometric product of the vectors in this vector space then defines the GA, of which I is a member.

  9. Bipolar coordinates - Wikipedia

    en.wikipedia.org/wiki/Bipolar_coordinates

    The equations for x and y can be combined to give + = ⁡ (+) [2] [3] or + = ⁡ (). This equation shows that σ and τ are the real and imaginary parts of an analytic function of x+iy (with logarithmic branch points at the foci), which in turn proves (by appeal to the general theory of conformal mapping) (the Cauchy-Riemann equations) that these particular curves of σ and τ intersect at ...