Search results
Results From The WOW.Com Content Network
Grain boundary engineering involves manipulating the grain boundary structure and energy to enhance mechanical properties. By controlling the interfacial energy, it is possible to engineer materials with desirable grain boundary characteristics, such as increased interfacial area, higher grain boundary density, or specific grain boundary types ...
This toughening becomes noticeable when there is a narrow size distribution of particles that are appropriately sized. Researchers typically accept the findings of Faber's analysis, which suggest that deflection effects in materials with roughly equiaxial grains may increase the fracture toughness by about twice the grain boundary value.
The four-point flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test. The major difference being that with the addition of a fourth bearing the portion of the beam between ...
Concrete fracture analysis is part of fracture mechanics that studies crack propagation and related failure modes in concrete. [17] As it is widely used in construction, fracture analysis and modes of reinforcement are an important part of the study of concrete, and different concretes are characterized in part by their fracture properties. [ 18 ]
In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure , and tend to decrease the electrical and thermal conductivity of the material.
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
There are mainly two types of grain boundary sliding: Rachinger sliding, [2] and Lifshitz sliding. [3] Grain boundary sliding usually occurs as a combination of both types of sliding. Boundary shape often determines the rate and extent of grain boundary sliding. [4] Grain boundary sliding is a motion to prevent intergranular cracks from forming.
Nonmetallic impurities often aggregate at grain boundaries and have the ability to impact the strength of materials by changing the grain boundary energy. Rupert et al. [26] conducted first-principles simulations to study the impact of the addition of common nonmetallic impurities on Σ5 (310) grain boundary energy in Cu. They claimed that the ...