When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    Conversely the period of the repeating decimal of a fraction ⁠ c / d ⁠ will be (at most) the smallest number n such that 10 n − 1 is divisible by d. For example, the fraction2 / 7 ⁠ has d = 7, and the smallest k that makes 10 k − 1 divisible by 7 is k = 6, because 999999 = 7 × 142857. The period of the fraction2 / 7 ⁠ is ...

  3. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    where the repeating block is indicated by dots over its first and last terms. [2] If the initial non-repeating block is not present – that is, if k = -1, a 0 = a m and = [;,, …, ¯], the regular continued fraction x is said to be purely periodic.

  4. Simple continued fraction - Wikipedia

    en.wikipedia.org/wiki/Simple_continued_fraction

    The real numbers whose continued fraction eventually repeats are precisely the quadratic irrationals. [4] For example, the repeating continued fraction [1;1,1,1,...] is the golden ratio, and the repeating continued fraction [1;2,2,2,...] is the square root of 2. In contrast, the decimal representations of quadratic irrationals are apparently ...

  5. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations are rounded or padded to 10 places if the values are known.

  6. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  7. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    For the folded general continued fractions of both expressions, the rate convergence μ = (3 − √ 8) 2 = 17 − √ 288 ≈ 0.02943725, hence ⁠ 1 / μ ⁠ = (3 + √ 8) 2 = 17 + √ 288 ≈ 33.97056, whose common logarithm is 1.531... ≈ ⁠ 26 / 17 ⁠ > ⁠ 3 / 2 ⁠, thus adding at least three digits per two terms. This is because the ...

  8. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    If one has a two-digit number, take it and add the two numbers together and put that sum in the middle, and one can get the answer. For example: 24 x 11 = 264 because 2 + 4 = 6 and the 6 is placed in between the 2 and the 4. Second example: 87 x 11 = 957 because 8 + 7 = 15 so the 5 goes in between the 8 and the 7 and the 1 is carried to the 8.

  9. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    In fact, every real number can be written as the limit of a sequence of rational numbers (e.g. via its decimal expansion, also see completeness of the real numbers). As another example, π is the limit of the sequence (3, 3.1, 3.14, 3.141, 3.1415, ...), which is increasing.