When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The theorem tells us how different parts of the mass distribution affect the gravitational force measured at a point located a distance r 0 from the center of the mass distribution: [13] The portion of the mass that is located at radii r < r 0 causes the same force at the radius r 0 as if all of the mass enclosed within a sphere of radius r 0 ...

  4. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    In some frameworks of special relativity, physicists have used different definitions of the term. In these frameworks, two kinds of mass are defined: rest mass (invariant mass), [note 9] and relativistic mass (which increases with velocity). Rest mass is the Newtonian mass as measured by an observer moving along with the object.

  5. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Mass and weight of a given object on Earth and Mars.Weight varies due to different amount of gravitational acceleration whereas mass stays the same.. In common usage, the mass of an object is often referred to as its weight, though these are in fact different concepts and quantities.

  6. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    Some of the tests of the equivalence principle use names for the different ways mass appears in physical formulae. In nonrelativistic physics three kinds of mass can be distinguished: [14] Inertial mass intrinsic to an object, the sum of all of its mass–energy. Passive mass, the response to gravity, the object's weight.

  7. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  8. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    In Newtonian gravity, the source is mass. In special relativity, mass turns out to be part of a more general quantity called the energy–momentum tensor, which includes both energy and momentum densities as well as stress: pressure and shear. [40] Using the equivalence principle, this tensor is readily generalized to curved spacetime.

  9. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).