Ads
related to: devguide cutoff ratio equation analysis problems
Search results
Results From The WOW.Com Content Network
The structural cut-off is a concept in network science which imposes a degree cut-off in the degree distribution of a finite size network due to structural limitations (such as the simple graph property). Networks with vertices with degree higher than the structural cut-off will display structural disassortativity.
Alpha cutoff frequency, or is the frequency at which the common base DC current gain drops to 0.707 of its low frequency value. The common base DC current gain is the ratio of a transistor's collector current to the transistor's emitter current , or α = i C i E {\displaystyle \alpha ={\frac {i_{C}}{i_{E}}}} .
The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration.It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable.
As a voltage ratio this is a fall to / of the passband voltage. [1] Other ratios besides the 3 dB point may also be relevant, for example see § Chebyshev filters below. Far from the cutoff frequency in the transition band, the rate of increase of attenuation ( roll-off ) with logarithm of frequency is asymptotic to a constant.
In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...
There exist inputs to the travelling salesman problem that cause the Christofides algorithm to find a solution whose approximation ratio is arbitrarily close to 3/2. One such class of inputs are formed by a path of n vertices, with the path edges having weight 1 , together with a set of edges connecting vertices two steps apart in the path with ...
For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.
The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.