When.com Web Search

  1. Ads

    related to: consecutive numbers worksheets printable 3rd

Search results

  1. Results From The WOW.Com Content Network
  2. Integer sequence - Wikipedia

    en.wikipedia.org/wiki/Integer_sequence

    An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.

  3. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    where is the number of terms in the progression and is the common difference between terms. The formula is essentially the same as the formula for the standard deviation of a discrete uniform distribution , interpreting the arithmetic progression as a set of equally probable outcomes.

  4. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  5. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    The number of binary strings of length n without an even number of consecutive 0 s or 1 s is 2F n. For example, out of the 16 binary strings of length 4, there are 2F 4 = 6 without an even number of consecutive 0 s or 1 s—they are 0001, 0111, 0101, 1000, 1010, 1110. There is an equivalent statement about subsets.

  6. Sequential time - Wikipedia

    en.wikipedia.org/wiki/Sequential_time

    A sequential time is one in which the numbers form a normal sequence, such as 1:02:03 4/5/06 (two minutes and three seconds past 1 am on 4 May 2006 (or April 5, 2006 in the United States) or the same time and date in the "06" year of any other century). Short sequential times such as 1:23:45 or 12:34:56 appear every day.

  7. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    Pythagorean Triples and the Unit Circle, chap. 2–3, in "A Friendly Introduction to Number Theory" by Joseph H. Silverman, 3rd ed., 2006, Pearson Prentice Hall, Upper Saddle River, NJ, ISBN 0-13-186137-9; Pythagorean Triples at cut-the-knot Interactive Applet showing unit circle relationships to Pythagorean Triples; Pythagorean Triplets