When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hydrostatic stress - Wikipedia

    en.wikipedia.org/wiki/Hydrostatic_stress

    A specialized case of hydrostatic stress contains isotropic compressive stress, which changes only in volume, but not in shape. [1] Pure hydrostatic stress can be experienced by a point in a fluid such as water. It is often used interchangeably with "mechanical pressure" and is also known as confining stress, particularly in the field of ...

  3. Pressure prism - Wikipedia

    en.wikipedia.org/wiki/Pressure_prism

    Hydrostatic pressure is the pressure exerted by a fluid at rest – for example, on the sides of a swimming pool, a glass of water or the bottom of the ocean. Its value at any given location within the fluid is the product of the fluid density ( ρ ), the depth ( d ), and the forces applied by gravity ( g ) plus any background pressures, such ...

  4. Open-channel flow - Wikipedia

    en.wikipedia.org/wiki/Open-channel_flow

    The depth changes abruptly over a comparatively short distance. Rapidly varied flow is known as a local phenomenon. Examples are the hydraulic jump and the hydraulic drop. Gradually-varied flow. The depth changes over a long distance. Continuous flow. The discharge is constant throughout the reach of the channel under consideration. This is ...

  5. Hydrostatics - Wikipedia

    en.wikipedia.org/wiki/Hydrostatics

    In medicine, hydrostatic pressure in blood vessels is the pressure of the blood against the wall. It is the opposing force to oncotic pressure . In capillaries, hydrostatic pressure (also known as capillary blood pressure) is higher than the opposing “colloid osmotic pressure” in blood—a “constant” pressure primarily produced by ...

  6. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    Once a solution (i.e. the horizontal velocities and free surface displacement) has been found, the vertical velocity can be recovered via the continuity equation. Situations in fluid dynamics where the horizontal length scale is much greater than the vertical length scale are common, so the shallow-water equations are widely applicable.

  7. Tait equation - Wikipedia

    en.wikipedia.org/wiki/Tait_equation

    where is the hydrostatic pressure in addition to the atmospheric one, is the volume at atmospheric pressure, is the volume under additional pressure , and , are experimentally determined parameters. A very detailed historical study on the Tait equation with the physical interpretation of the two parameters A {\displaystyle A} and Π ...

  8. Young–Laplace equation - Wikipedia

    en.wikipedia.org/wiki/Young–Laplace_equation

    In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.

  9. Pascal's law - Wikipedia

    en.wikipedia.org/wiki/Pascal's_law

    Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.