Search results
Results From The WOW.Com Content Network
Nuclear fuel process A graph comparing nucleon number against binding energy Close-up of a replica of the core of the research reactor at the Institut Laue-Langevin. Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.
As such, while all fissile isotopes are fissionable, not all fissionable isotopes are fissile. In the arms control context, particularly in proposals for a Fissile Material Cutoff Treaty, the term fissile is often used to describe materials that can be used in the fission primary of a nuclear weapon. [6]
The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232 Th, as the fertile material. In the reactor, 232 Th is transmuted into the fissile artificial uranium isotope 233 U which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material (such as 231 Th
A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...
Thorium is relatively abundant in the Earth's crust. Tiny crystals of thorite, a thorium mineral, under magnification. Molten salt reactor at Oak Ridge. By 1946, eight years after the discovery of nuclear fission, three fissile isotopes had been publicly identified for use as nuclear fuel: [6] [7]
A nuclear fuel pellet Nuclear fuel pellets that are ready for fuel assembly completion. The use of ordinary water makes it necessary to do a certain amount of enrichment of the uranium fuel before the necessary criticality of the reactor can be maintained. The light-water reactor uses uranium 235 as a fuel, enriched to approximately 3 percent.
Iran's nuclear programme is spread over many locations. ... Iran is now enriching uranium to up to 60% fissile purity, close to the 90% of weapons grade, at two sites, and in theory it has enough ...
The high short-term radioactivity of spent nuclear fuel is primarily from fission products with short half-life.The radioactivity in the fission product mixture is mostly due to short-lived isotopes such as 131 I and 140 Ba, after about four months 141 Ce, 95 Zr/ 95 Nb and 89 Sr constitute the largest contributors, while after about two or three years the largest share is taken by 144 Ce/ 144 ...