Search results
Results From The WOW.Com Content Network
Some trajectories of a particle in a box according to Newton's laws of classical mechanics (A), and according to the Schrödinger equation of quantum mechanics (B–F). In (B–F), the horizontal axis is position, and the vertical axis is the real part (blue) and imaginary part (red) of the wave function.
In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice.The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice.
In quantum mechanics, the results of the quantum particle in a box can be used to look at the equilibrium situation for a quantum ideal gas in a box which is a box containing a large number of molecules which do not interact with each other except for instantaneous thermalizing collisions.
The density of states related to volume V and N countable energy levels is defined as: = = (()). Because the smallest allowed change of momentum for a particle in a box of dimension and length is () = (/), the volume-related density of states for continuous energy levels is obtained in the limit as ():= (()), Here, is the spatial dimension of the considered system and the wave vector.
Unlike the infinite potential well, there is a probability associated with the particle being found outside the box. The quantum mechanical interpretation is unlike the classical interpretation, where if the total energy of the particle is less than the potential energy barrier of the walls it cannot be found outside the box.
For example, the three states (n x = 7, n y = 1), (n x = 1, n y = 7) and (n x = n y = 5) all have = and constitute a degenerate set. Degrees of degeneracy of different energy levels for a particle in a square box:
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For massive, non-interacting particles, the thermal de Broglie wavelength can be derived from the calculation of the partition function.Assuming a 1-dimensional box of length L, the partition function (using the energy states of the 1D particle in a box) is = = ().