Search results
Results From The WOW.Com Content Network
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.
Examples include Circoporus octahedrus, Circogonia icosahedra, Lithocubus geometricus and Circorrhegma dodecahedra; the shapes of these creatures are indicated by their names. [5] The outer protein shells of many viruses form regular polyhedra. For example, HIV is enclosed in a regular icosahedron, as is the head of a typical myovirus. [6] [7]
A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid [3]. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as ...
A polyhedron has been defined as a set of points in real affine (or Euclidean) space of any dimension n that has flat sides. It may alternatively be defined as the intersection of finitely many half-spaces. Unlike a conventional polyhedron, it may be bounded or unbounded. In this meaning, a polytope is a bounded polyhedron. [14] [15]
In geometry, a dodecahedron (from Ancient Greek δωδεκάεδρον (dōdekáedron); from δώδεκα (dṓdeka) 'twelve' and ἕδρα (hédra) 'base, seat, face') or duodecahedron [1] is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid.
The Schläfli symbol of a regular polyhedron is {p,q} if its faces are p-gons, and each vertex is surrounded by q faces (the vertex figure is a q-gon). For example, {5,3} is the regular dodecahedron. It has pentagonal (5 edges) faces, and 3 pentagons around each vertex. See the 5 convex Platonic solids, the 4 nonconvex Kepler-Poinsot polyhedra.
This equation, stated by Euler in 1758, [3] is known as Euler's polyhedron formula. [4] It corresponds to the Euler characteristic of the sphere (i.e. = ), and applies identically to spherical polyhedra. An illustration of the formula on all Platonic polyhedra is given below.
These require a more general definition of polyhedra. Grünbaum (1994) gave a rather complicated definition of a polyhedron, while McMullen & Schulte (2002) gave a simpler and more general definition of a polyhedron: in their terminology, a polyhedron is a 2-dimensional abstract polytope with a non-degenerate 3-dimensional realization. Here an ...