When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  3. Differentiation of integrals - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of_integrals

    The problem of the differentiation of integrals is much harder in an infinite-dimensional setting. Consider a separable Hilbert space (H, , ) equipped with a Gaussian measure γ. As stated in the article on the Vitali covering theorem, the Vitali covering theorem fails for Gaussian measures on infinite-dimensional Hilbert spaces. Two results of ...

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Differentiating under the integral sign; Risch algorithm ... was the fundamental theorem of calculus relating differentiation and integration: ... One example of an ...

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Differentiating under the integral sign; Risch algorithm; ... Under mild conditions (for example, ... This process of finding a derivative is known as differentiation.

  6. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.

  7. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    For example, since the surface is time-independent, we can bring the differentiation under the integral sign in Faraday's law: =, Maxwell's equations can be formulated with possibly time-dependent surfaces and volumes by using the differential version and using Gauss' and Stokes' theorems as appropriate.

  8. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    However, because integration is the inverse operation of differentiation, Lagrange's notation for higher order derivatives extends to integrals as well. Repeated integrals of f may be written as f ( − 1 ) ( x ) {\displaystyle f^{(-1)}(x)} for the first integral (this is easily confused with the inverse function f − 1 ( x ) {\displaystyle f ...

  9. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    He adapted the integral symbol, ∫, from the letter ſ , standing for summa (written as ſumma; Latin for "sum" or "total"). The modern notation for the definite integral, with limits above and below the integral sign, was first used by Joseph Fourier in Mémoires of the French Academy around 1819–1820, reprinted in his book of 1822. [15]