Search results
Results From The WOW.Com Content Network
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). [1] However, pI is also used. [2] For brevity, this article uses pI.
In approximately neutral aqueous solution (pH ≅ 7), the basic amino group is mostly protonated and the carboxylic acid is mostly deprotonated, so that the predominant species is the zwitterion H 3 N + −RCH−COO −. The pH at which the average charge is zero is known as the molecule's isoelectric point.
As both the amine and carboxylic acid groups of amino acids can react to form amide bonds, one amino acid molecule can react with another and become joined through an amide linkage. This polymerization of amino acids is what creates proteins. This condensation reaction yields the newly formed peptide bond and a molecule of water.
The iso-electric point is the pH value at which the zeta potential is approximately zero. At a pH near the iso-electric point (± 2 pH units), colloids are usually unstable; the particles tend to coagulate or flocculate. Such titrations use acids or bases as titration reagents. Tables of iso-electric points for different materials are available ...
The isoionic point is the pH value at which a zwitterion molecule has an equal number of positive and negative charges and no adherent ionic species. It was first defined by S.P.L. Sørensen, Kaj Ulrik Linderstrøm-Lang and Ellen Lund in 1926 [1] and is mainly a term used in protein sciences.
The pH-dependence of the activity displayed by enzymes and the pH-dependence of protein stability, for example, are properties that are determined by the pK a values of amino acid side chains. The p K a values of an amino acid side chain in solution is typically inferred from the p K a values of model compounds (compounds that are similar to ...
It works on almost any kind of charged molecule—including small inorganic anions, [2] large proteins, [3] small nucleotides, [4] and amino acids. However, ion chromatography must be done in conditions that are one pH unit away from the isoelectric point of a protein. [5] The two types of ion chromatography are anion-exchange and cation-exchange.
The immobilized pH gradient is obtained by the continuous change in the ratio of immobilines. An immobiline is a weak acid or base defined by its pK value. A protein that is in a pH region below its isoelectric point (pI) will be positively charged and so will migrate toward the cathode (negatively charged electrode). As it migrates through a ...