When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...

  3. Perfect field - Wikipedia

    en.wikipedia.org/wiki/Perfect_field

    Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect. An example of an imperfect field is the field F q ( x ) {\displaystyle \mathbf {F} _{q}(x)} , since the Frobenius endomorphism sends x ↦ x p {\displaystyle x\mapsto x^{p}} and therefore is not surjective.

  4. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.

  5. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    As every polynomial ring over a field is a unique factorization domain, every monic polynomial over a finite field may be factored in a unique way (up to the order of the factors) into a product of irreducible monic polynomials. There are efficient algorithms for testing polynomial irreducibility and factoring polynomials over finite fields.

  6. Linearised polynomial - Wikipedia

    en.wikipedia.org/wiki/Linearised_polynomial

    The map x ↦ L(x) is a linear map over any field containing F q.; The set of roots of L is an F q-vector space and is closed under the q-Frobenius map.; Conversely, if U is any F q-linear subspace of some finite field containing F q, then the polynomial that vanishes exactly on U is a linearised polynomial.

  7. Splitting field - Wikipedia

    en.wikipedia.org/wiki/Splitting_field

    The splitting field of x 2 + 1 over F 7 is F 49; the polynomial has no roots in F 7, i.e., −1 is not a square there, because 7 is not congruent to 1 modulo 4. [ 3 ] The splitting field of x 2 − 1 over F 7 is F 7 since x 2 − 1 = ( x + 1)( x − 1) already splits into linear factors.

  8. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    The rational univariate representation or RUR is a representation of the solutions of a zero-dimensional polynomial system over the rational numbers which has been introduced by F. Rouillier. [10] A RUR of a zero-dimensional system consists in a linear combination x 0 of the variables, called separating variable, and a system of equations [11]

  9. Chevalley–Warning theorem - Wikipedia

    en.wikipedia.org/wiki/Chevalley–Warning_theorem

    In number theory, the Chevalley–Warning theorem implies that certain polynomial equations in sufficiently many variables over a finite field have solutions. It was proved by Ewald Warning () and a slightly weaker form of the theorem, known as Chevalley's theorem, was proved by Chevalley ().