When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    A primitive root exists if and only if n is 1, 2, 4, p k or 2p k, where p is an odd prime and k > 0. For all other values of n the multiplicative group of integers modulo n is not cyclic . [ 1 ] [ 2 ] [ 3 ] This was first proved by Gauss .

  3. Primitive element (finite field) - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_(finite...

    In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF( q ) is called a primitive element if it is a primitive ( q − 1) th root of unity in GF( q ) ; this means that each non-zero element of GF( q ) can be written as α i for some natural number i .

  4. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!"

  5. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    A function is surjective or onto if each element of the codomain is mapped to by at least one element of the domain. In other words, each element of the codomain has a non-empty preimage. Equivalently, a function is surjective if its image is equal to its codomain. A surjective function is a surjection. [1] The formal definition is the following.

  6. Element distinctness problem - Wikipedia

    en.wikipedia.org/wiki/Element_distinctness_problem

    Elements that occur more than / times in a multiset of size may be found by a comparison-based algorithm, the Misra–Gries heavy hitters algorithm, in time (⁡). The element distinctness problem is a special case of this problem where k = n {\displaystyle k=n} .

  7. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃ x " or " ∃( x ...

  8. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.

  9. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. [33] Python is dynamically type-checked and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional ...