Search results
Results From The WOW.Com Content Network
Gaussian processes are also commonly used to tackle numerical analysis problems such as numerical integration, solving differential equations, or optimisation in the field of probabilistic numerics. Gaussian processes can also be used in the context of mixture of experts models, for example.
This is a comparison of statistical analysis software that allows doing inference with Gaussian processes often using approximations. This article is written from the point of view of Bayesian statistics , which may use a terminology different from the one commonly used in kriging .
A non-trivial way to mix the latent functions is by convolving a base process with a smoothing kernel. If the base process is a Gaussian process, the convolved process is Gaussian as well. We can therefore exploit convolutions to construct covariance functions. [20] This method of producing non-separable kernels is known as process convolution.
In statistics, originally in geostatistics, kriging or Kriging (/ ˈ k r iː ɡ ɪ ŋ /), also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. [1]
The Ornstein–Uhlenbeck process is a stationary Gauss–Markov process, which means that it is a Gaussian process, a Markov process, and is temporally homogeneous. In fact, it is the only nontrivial process that satisfies these three conditions, up to allowing linear transformations of the space and time variables. [ 1 ]
Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process ...
In statistics and machine learning, Gaussian process approximation is a computational method that accelerates inference tasks in the context of a Gaussian process model, most commonly likelihood evaluation and prediction. Like approximations of other models, they can often be expressed as additional assumptions imposed on the model, which do ...
The second matrix Riccati differential equation solves the linear–quadratic regulator problem (LQR). These problems are dual and together they solve the linear–quadratic–Gaussian control problem (LQG). So the LQG problem separates into the LQE and LQR problem that can be solved independently. Therefore, the LQG problem is called separable.