Search results
Results From The WOW.Com Content Network
The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot; substitution: coat → cost
When an exact match cannot be found in the TM database for the text being translated, there is an option to search for a match that is less than exact; the translator sets the threshold of the fuzzy match to a percentage value less than 100%, and the database will then return any matches in its memory corresponding to that percentage.
In computer science, a lookup table (LUT) is an array that replaces runtime computation of a mathematical function with a simpler array indexing operation, in a process termed as direct addressing. The savings in processing time can be significant, because retrieving a value from memory is often faster than carrying out an "expensive ...
Matching is a statistical technique that evaluates the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned).
The basic linguistic assumption of proximity searching is that the proximity of the words in a document implies a relationship between the words. Given that authors of documents try to formulate sentences which contain a single idea, or cluster of related ideas within neighboring sentences or organized into paragraphs, there is an inherent, relatively high, probability within the document ...
The objective is to make the approximation as close as possible to the actual function, typically with an accuracy close to that of the underlying computer's floating point arithmetic. This is accomplished by using a polynomial of high degree, and/or narrowing the domain over which the polynomial has to approximate the function. Narrowing the ...
Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around (neighboring) that point. The nearest neighbor algorithm selects the value of the nearest point and does not consider the values of neighboring points at all, yielding a piecewise ...
Several progressively more accurate approximations of the step function. An asymmetrical Gaussian function fit to a noisy curve using regression.. In general, a function approximation problem asks us to select a function among a well-defined class [citation needed] [clarification needed] that closely matches ("approximates") a target function [citation needed] in a task-specific way.