When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    Turbulence kinetic energy is then transferred down the turbulence energy cascade, and is dissipated by viscous forces at the Kolmogorov scale. This process of production, transport and dissipation can be expressed as: D k D t + ∇ ⋅ T ′ = P − ε , {\displaystyle {\frac {Dk}{Dt}}+\nabla \cdot T'=P-\varepsilon ,} where: [ 1 ]

  3. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first variable being the turbulence kinetic energy (k) while the second (ω) is the specific rate of dissipation (of the turbulence kinetic energy k into internal thermal energy). SST (Menter’s Shear Stress Transport)

  4. Kolmogorov microscales - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_microscales

    where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.

  5. Energy cascade - Wikipedia

    en.wikipedia.org/wiki/Energy_cascade

    The energy spectrum, E(k), thus represents the contribution to turbulence kinetic energy by wavenumbers from k to k + dk. The largest eddies have low wavenumber, and the small eddies have high wavenumbers. Since diffusion goes as the Laplacian of velocity, the dissipation rate may be written in terms of the energy spectrum as:

  6. K-epsilon turbulence model - Wikipedia

    en.wikipedia.org/wiki/K-epsilon_turbulence_model

    Unlike earlier turbulence models, k-ε model focuses on the mechanisms that affect the turbulent kinetic energy. The mixing length model lacks this kind of generality. [2] The underlying assumption of this model is that the turbulent viscosity is isotropic, in other words, the ratio between Reynolds stress and mean rate of deformations is the same in all directions.

  7. Reynolds stress equation model - Wikipedia

    en.wikipedia.org/wiki/Reynolds_stress_equation_model

    Such one- and two-equation based closures cannot account for the return to isotropy of turbulence, [1] observed in decaying turbulent flows. Eddy-viscosity based models cannot replicate the behaviour of turbulent flows in the Rapid Distortion limit, [2] where the turbulent flow essentially behaves as an elastic medium (instead of viscous).

  8. Turbulence - Wikipedia

    en.wikipedia.org/wiki/Turbulence

    where ⁠ 1 / 2 ⁠ u i u i is the mean turbulent kinetic energy of the flow. The wavenumber k corresponding to length scale r is k = ⁠ 2π / r ⁠ . Therefore, by dimensional analysis, the only possible form for the energy spectrum function according with the third Kolmogorov's hypothesis is

  9. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    However, direct numerical simulation is a useful tool in fundamental research in turbulence. Using DNS it is possible to perform "numerical experiments", and extract from them information difficult or impossible to obtain in the laboratory, allowing a better understanding of the physics of turbulence.