Search results
Results From The WOW.Com Content Network
The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However, a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface.
Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the logarithm of a matrix is the (multi-valued) inverse function of the matrix exponential. [97] Another example is the p-adic logarithm, the inverse function of the p-adic exponential.
The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities: = + = Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: [ 5 ] ln ( x ⋅ y ) = ln x + ln y ...
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. ... log a y: y > 0 and a > 0 and ...
The binary logarithm function may be defined as the inverse function to the power of two function, which is a strictly increasing function over the positive real numbers and therefore has a unique inverse. [7] Alternatively, it may be defined as ln n/ln 2, where ln is the natural logarithm, defined in any of its standard ways.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
Its inverse function, the natural logarithm, or , converts products to sums: = + . The exponential function is occasionally called the natural exponential function , matching the name natural logarithm , for distinguishing it from some other functions that are also commonly called exponential functions .
Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series