Search results
Results From The WOW.Com Content Network
Direct tensile stress, applicable to steel elements, and is at the lower region of the beam. These last two forces form a couple or moment as they are equal in magnitude and opposite in direction. This bending moment resists the sagging deformation characteristic of a beam experiencing bending.
Loads imposed on structures are supported by means of forces transmitted through structural elements. These forces can manifest themselves as tension (axial force), compression (axial force), shear, and bending, or flexure (a bending moment is a force multiplied by a distance, or lever arm, hence producing a turning effect or torque).
Bending is a cost-effective near net shape process when used for low to medium quantities. Parts usually are lightweight with good mechanical properties. A disadvantage is that some process variants are sensitive to variations in material properties. For instance, differences in spring-back have a direct influence on the resulting bend angle.
Chapter 4 – Principles and Analytical Methods Chapter 5 – Numerical Methods Chapter 6 – Experimental Methods Chapter 7 – Tension, Compression, Shear, and Combined Stress Chapter 8 – Beams; Flexure of Straight Bars Chapter 9 – Bending of Curved Beams Chapter 10 – Torsion Chapter 11 – Flat Plates
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
This results in a constant bending moment between the two supports. Consequently, a shear-free zone is created, where the specimen is subjected only to bending. This has the advantage that no additional shear force acts on the specimen, unlike in the 3-point bending test. [6] The bending modulus for a flat specimen is calculated as follows:
The flexural strength is stress at failure in bending. It is equal to or slightly larger than the failure stress in tension. Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1]
The direct tension indicators shall conform to required chemical composition, compression load, and dimensional values." [ 5 ] Like other fastener components, DTIs are covered by the Fastener Quality Act of 1999 in section 3: Definitions (6), [ 6 ] where a DTI is described as "a load-indicating washer, that is through-hardened".