Search results
Results From The WOW.Com Content Network
Local and global maxima and minima for cos(3πx)/x, 0.1≤ x ≤1.1. In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function.
The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...
Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]
A sufficient condition for a local maximum is that these minors alternate in sign with the smallest one having the sign of () +. A sufficient condition for a local minimum is that all of these minors have the sign of (). (In the unconstrained case of = these conditions coincide with the conditions for the unbordered Hessian to be negative ...
If D(a, b) = 0 then the point (a, b) could be any of a minimum, maximum, or saddle point (that is, the test is inconclusive). Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at ( x , y ) implies that f xx and f yy have the same sign there.
After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:
Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.
A surface with two local maxima. (Only one of them is the global maximum.) If a hill-climber begins in a poor location, it may converge to the lower maximum. Hill climbing will not necessarily find the global maximum, but may instead converge on a local maximum. This problem does not occur if the heuristic is convex.