Search results
Results From The WOW.Com Content Network
For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we have f(x ∗) > f(x). Note that a point is a strict global maximum point if and only if ...
The graph of a cubic function always has a single inflection point. It may have two critical points, a local minimum and a local maximum. Otherwise, a cubic function is monotonic. The graph of a cubic function is symmetric with respect to its inflection point; that is, it is invariant under a rotation of a half turn around this point.
Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]
a local maximum (maximal turning point or relative maximum) is one where the derivative of the function changes from positive to negative; Saddle points (stationary points that are neither local maxima nor minima: they are inflection points. The left is a "rising point of inflection" (derivative is positive on both sides of the red point); the ...
In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.
The graph of f is a concave up parabola, ... a non-degenerate critical point is a local maximum or a local minimum, depending on the sign of the second derivative ...
Despite the many local maxima in this graph, the global maximum can still be found using simulated annealing. Unfortunately, the applicability of simulated annealing is problem-specific because it relies on finding lucky jumps that improve the position. In such extreme examples, hill climbing will most probably produce a local maximum.
Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.