Search results
Results From The WOW.Com Content Network
Magnesium oxide (Mg O), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide).It has an empirical formula of MgO and consists of a lattice of Mg 2+ ions and O 2− ions held together by ionic bonding.
This often causes ionic compounds to be very stable. Ionic bonds have high bond energy. Bond energy is the mean amount of energy required to break the bond in the gaseous state. Most ionic compounds exist in the form of a crystal structure, in which the ions occupy the corners of the crystal.
Magnesium oxide is the end product of the thermal decomposition of some magnesium compounds and is usually prepared by igniting carbonates or hydroxides. Magnesium hydroxide is a strong electrolyte, which can be obtained by the reaction of a soluble magnesium salt and sodium hydroxide.
In both, magnesium oxide is the precursor to magnesium metal. The magnesium oxide is produced as a solid solution with calcium oxide by calcining the mineral dolomite, which is a solid solution of calcium and magnesium carbonates: CaCO 3 ·MgCO 3 → MgO·CaO + 2 CO 2. Reduction occurs at high temperatures with silicon.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Molecular orbital diagram of NO. Nitric oxide is a heteronuclear molecule that exhibits mixing. The construction of its MO diagram is the same as for the homonuclear molecules. It has a bond order of 2.5 and is a paramagnetic molecule. The energy differences of the 2s orbitals are different enough that each produces its own non-bonding σ orbitals.
Magnesium iodide is stable at high heat under a hydrogen atmosphere, but decomposes in air at normal temperatures, turning brown from the release of elemental iodine. When heated in air, it decomposes completely to magnesium oxide. [4] Another method to prepare MgI 2 is mixing powdered elemental iodine and magnesium metal.
A magnesium(I) dimer is a molecular compound containing a magnesium to magnesium bond (Mg-Mg), giving the metal an apparent +1 oxidation state. Alkaline earth metals are commonly found in the +2-oxidation state, such as magnesium. The M 2+ are considered as redox-inert, meaning that the +2 state is significant. [1]