When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In this terminology, the product rule states that the derivative operator is a derivation on functions. In differential geometry , a tangent vector to a manifold M at a point p may be defined abstractly as an operator on real-valued functions which behaves like a directional derivative at p : that is, a linear functional v which is a derivation ...

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    In calculus, the general Leibniz rule, [1] ... the product rule for the derivative of the ... computes the symbol of the composition of differential operators.

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  5. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two ... Product ruleFormula for the derivative of a product;

  6. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The study of differential calculus is unified with the calculus of finite differences in time scale calculus. [54] The arithmetic derivative involves the function that is defined for the integers by the prime factorization. This is an analogy with the product rule. [55]

  7. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus. If a differential k-form is thought of as measuring the flux through an infinitesimal k-parallelotope at each point of the manifold, then its exterior ...

  8. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  9. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.