When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    For example, the gradient of the function (,,) = + ⁡ is (,,) = + ⁡ (). or (,,) = [⁡]. In some applications it is customary to represent the gradient as a row vector or column vector of its components in a rectangular coordinate system; this article follows the convention of the gradient being a column vector, while the derivative is a row ...

  3. Grade (slope) - Wikipedia

    en.wikipedia.org/wiki/Grade_(slope)

    The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line is either the elevation angle of that surface to the horizontal or its tangent.

  4. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    Slope: = = ⁡ In mathematics, the slope or gradient of a line is a number that describes the direction of the line on a plane. [1] Often denoted by the letter m, slope is calculated as the ratio of the vertical change to the horizontal change ("rise over run") between two distinct points on the line, giving the same number for any choice of points.

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  6. Partial derivative - Wikipedia

    en.wikipedia.org/wiki/Partial_derivative

    This vector is called the gradient of f at a. If f is differentiable at every point in some domain, then the gradient is a vector-valued function ∇f which takes the point a to the vector ∇f(a). Consequently, the gradient produces a vector field.

  7. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to solve for three unknown variables, x 1, x 2, and x 3. This example shows one iteration of the gradient descent. Consider the nonlinear system of equations

  8. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:

  9. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of the gradient of any scalar field φ is always the zero vector field = which follows from the antisymmetry in the definition of the curl, and the symmetry of second derivatives. The divergence of the curl of any vector field is equal to zero: ∇ ⋅ ( ∇ × F ) = 0. {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.}