Search results
Results From The WOW.Com Content Network
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
Plotted graphs are: y = 10 x (red), y = x (green), y = log e (x) (blue). The top left graph is linear in the X- and Y-axes, and the Y-axis ranges from 0 to 10. A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom ...
2013/10 Origin 9.1 [7] SR0 added support for Piper diagram, Ternary surface plot etc. 2012/10 Origin 9 with high performance OpenGL 3D Graphing, orthogonal regression for implicit/explicit functions; 2011/11 Origin 8.6, first version in 64bit; 2011/04 Origin 8.5.1; 2010/09 Origin 8.5.0; 2009/10 Origin 8.1; 2009/08 Origin 8 SR6; 2007/12 Origin 8 ...
Excel for the web is a free lightweight version of Microsoft Excel available as part of Office on the web, which also includes web versions of Microsoft Word and Microsoft PowerPoint. Excel for the web can display most of the features available in the desktop versions of Excel, although it may not be able to insert or edit them.
Thus, log 10 (x) is related to the number of decimal digits of a positive integer x: The number of digits is the smallest integer strictly bigger than log 10 (x). [7] For example, log 10 (5986) is approximately 3.78 . The next integer above it is 4, which is the number of digits of 5986.
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series
An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...