When.com Web Search

  1. Ads

    related to: how to expand partial fractions given

Search results

  1. Results From The WOW.Com Content Network
  2. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

  3. Heaviside cover-up method - Wikipedia

    en.wikipedia.org/wiki/Heaviside_cover-up_method

    When a partial fraction term has a single (i.e. unrepeated) binomial in the denominator, the numerator is a residue of the function defined by the input fraction. We calculate each respective numerator by (1) taking the root of the denominator (i.e. the value of x that makes the denominator zero) and (2) then substituting this root into the ...

  4. Partial fractions in complex analysis - Wikipedia

    en.wikipedia.org/wiki/Partial_fractions_in...

    In complex analysis, a partial fraction expansion is a way of writing a meromorphic function as an infinite sum of rational functions and polynomials. When f ( z ) {\displaystyle f(z)} is a rational function, this reduces to the usual method of partial fractions .

  5. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    A continued fraction is an expression of the form = + + + + + where the a n (n > 0) are the partial numerators, the b n are the partial denominators, and the leading term b 0 is called the integer part of the continued fraction.

  6. Laurent series - Wikipedia

    en.wikipedia.org/wiki/Laurent_series

    For example, consider the following rational function, along with its partial fraction expansion: = () = + (). This function has singularities at z = 1 {\displaystyle z=1} and z = 2 i {\displaystyle z=2i} , where the denominator is zero and the expression is therefore undefined.

  7. Mittag-Leffler's theorem - Wikipedia

    en.wikipedia.org/wiki/Mittag-Leffler's_theorem

    One possible proof outline is as follows. If is finite, it suffices to take () = ().If is not finite, consider the finite sum () = where is a finite subset of .While the () may not converge as F approaches E, one may subtract well-chosen rational functions with poles outside of (provided by Runge's theorem) without changing the principal parts of the () and in such a way that convergence is ...