Search results
Results From The WOW.Com Content Network
For example, in geometry, two linearly independent vectors span a plane. To express that a vector space V is a linear span of a subset S, one commonly uses one of the following phrases: S spans V; S is a spanning set of V; V is spanned or generated by S; S is a generator set or a generating set of V.
The above algorithm can be used in general to find the dependence relations between any set of vectors, and to pick out a basis from any spanning set. Also finding a basis for the column space of A is equivalent to finding a basis for the row space of the transpose matrix A T.
Since the notions of vector length and angle between vectors can be generalized to any n-dimensional inner product space, this is also true for the notions of orthogonal projection of a vector, projection of a vector onto another, and rejection of a vector from another. In some cases, the inner product coincides with the dot product.
In this article, vectors are represented in boldface to distinguish them from scalars. [nb 1] [1] A vector space over a field F is a non-empty set V together with a binary operation and a binary function that satisfy the eight axioms listed below. In this context, the elements of V are commonly called vectors, and the elements of F are called ...
The equivalence of determinantal rank and column rank is a strengthening of the statement that if the span of n vectors has dimension p, then p of those vectors span the space (equivalently, that one can choose a spanning set that is a subset of the vectors): the equivalence implies that a subset of the rows and a subset of the columns ...
A set of vectors is linearly independent if none is in the span of the others. Equivalently, a set S of vectors is linearly independent if the only way to express the zero vector as a linear combination of elements of S is to take zero for every coefficient a i. A set of vectors that spans a vector space is called a spanning set or generating set.
It follows that x is in the kernel of A, if and only if x is orthogonal (or perpendicular) to each of the row vectors of A (since orthogonality is defined as having a dot product of 0). The row space, or coimage, of a matrix A is the span of the row vectors of A. By the above reasoning, the kernel of A is the orthogonal complement to the row space.
If the vectors v 1, ... , v k have n components, then their span is a subspace of K n. Geometrically, the span is the flat through the origin in n-dimensional space determined by the points v 1, ... , v k. Example The xz-plane in R 3 can be parameterized by the equations =, =, =.