When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Permittivity - Wikipedia

    en.wikipedia.org/wiki/Permittivity

    Permittivity as a function of frequency can take on real or complex values. In SI units, permittivity is measured in farads per meter (F/m or A 2 ·s 4 ·kg −1 ·m −3). The displacement field D is measured in units of coulombs per square meter (C/m 2), while the electric field E is measured in volts per meter (V/m).

  3. Vacuum permittivity - Wikipedia

    en.wikipedia.org/wiki/Vacuum_permittivity

    Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space , the electric constant , or the distributed capacitance of the vacuum.

  4. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    More sophisticated instruments use other techniques such as inserting the capacitor-under-test into a bridge circuit. By varying the values of the other legs in the bridge (so as to bring the bridge into balance), the value of the unknown capacitor is determined. This method of indirect use of measuring capacitance ensures greater precision.

  5. Relative permittivity - Wikipedia

    en.wikipedia.org/wiki/Relative_permittivity

    The relative permittivity is an essential piece of information when designing capacitors, and in other circumstances where a material might be expected to introduce capacitance into a circuit. If a material with a high relative permittivity is placed in an electric field , the magnitude of that field will be measurably reduced within the volume ...

  6. Electrical susceptance - Wikipedia

    en.wikipedia.org/wiki/Electrical_susceptance

    It is common for electrical components to have slightly reduced capacitances at extreme frequencies, due to slight inductance of the internal conductors used to make capacitors (not just the leads), and permittivity changes in insulating materials with frequency: C is very nearly, but not quite a constant.

  7. Variable capacitor - Wikipedia

    en.wikipedia.org/wiki/Variable_capacitor

    Differential variable capacitors also have two independent stators, but unlike in the butterfly capacitor where capacities on both sides increase equally as the rotor is turned, in a differential variable capacitor one section's capacity will increase while the other section's decreases, keeping the sum of the two stator capacitances constant.

  8. Dielectric loss - Wikipedia

    en.wikipedia.org/wiki/Dielectric_loss

    A capacitor is a discrete electrical circuit component typically made of a dielectric placed between conductors. One lumped element model of a capacitor includes a lossless ideal capacitor in series with a resistor termed the equivalent series resistance (ESR), as shown in the figure below. [4] The ESR represents losses in the capacitor.

  9. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.