Search results
Results From The WOW.Com Content Network
The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity. There are both actual and the isentropic stagnation states for a typical gas or vapor. Sometimes it is advantageous to make a distinction between the actual and the isentropic stagnation states.
For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline. Note that energy can be exchanged with the flow in an isentropic transformation, as long as it doesn't happen as heat exchange. An example of such an exchange would be an isentropic expansion or ...
As an example calculation using the above equation, assume that the propellant combustion gases are: at an absolute pressure entering the nozzle of p = 7.0 MPa and exit the rocket exhaust at an absolute pressure of p e = 0.1 MPa; at an absolute temperature of T = 3500 K; with an isentropic expansion factor of γ = 1.22 and a molar mass of M ...
The gas flow through a de Laval nozzle is isentropic (gas entropy is nearly constant). In a subsonic flow, sound will propagate through the gas. At the "throat", where the cross-sectional area is at its minimum, the gas velocity locally becomes sonic (Mach number = 1.0), a condition called choked flow.
Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for isentropic flow, so the conditions at point 1 move down vertically to point 3.
No parameters: {{NASA}} This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.. Two parameters: article and url (you must use both together):
This is a file created by NASA with a copyright notice. NASA copyright policy states that "NASA material is not protected by copyright unless noted". It is believed that the minimal usage of low resolution images of copyrighted NASA works, to illustrate the work in question, where no free equivalent is available,
Isentropic analysis of the 300 kelvin isotrope and the weather satellite image of clouds during a blizzard in Colorado. In meteorology, isentropic analysis is a technique used to find the vertical and horizontal motion of airmasses during an adiabatic (i.e. non-heat-exchanging) process above the planetary boundary layer.