Search results
Results From The WOW.Com Content Network
When X n converges almost completely towards X then it also converges almost surely to X. In other words, if X n converges in probability to X sufficiently quickly (i.e. the above sequence of tail probabilities is summable for all ε > 0), then X n also converges almost surely to X. This is a direct implication from the Borel–Cantelli lemma.
Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively. Taking the limit we conclude that the left-hand side also converges to zero, and therefore the sequence {(X n, Y n)} converges in probability to {(X, Y)}.
It is equivalent to check condition (iii) for the series = = = (′) where for each , and ′ are IID—that is, to employ the assumption that [] =, since is a sequence of random variables bounded by 2, converging almost surely, and with () = ().
Convergence of random variables, for "almost sure convergence" With high probability; Cromwell's rule, which says that probabilities should almost never be set as zero or one; Degenerate distribution, for "almost surely constant" Infinite monkey theorem, a theorem using the aforementioned terms; List of mathematical jargon
The continuous mapping theorem states that this will also be true if we replace the deterministic sequence {x n} with a sequence of random variables {X n}, and replace the standard notion of convergence of real numbers “→” with one of the types of convergence of random variables.
In probability theory, Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers.
This concept is often contrasted with uniform convergence.To say that = means that {| () |:} =, where is the common domain of and , and stands for the supremum.That is a stronger statement than the assertion of pointwise convergence: every uniformly convergent sequence is pointwise convergent, to the same limiting function, but some pointwise convergent sequences are not uniformly convergent.
Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.