When.com Web Search

  1. Ad

    related to: weighted mean calculator for survey questionnaire example pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    The weighted mean in this case is: ¯ = ¯ (=), (where the order of the matrix–vector product is not commutative), in terms of the covariance of the weighted mean: ¯ = (=), For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component.

  3. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Where is the sample size, = / is the fraction of the sample from the population, () is the (squared) finite population correction (FPC), is the unbiassed sample variance, and (¯) is some estimator of the variance of the mean under the sampling design. The issue with the above formula is that it is extremely rare to be able to directly estimate ...

  4. Stratified sampling - Wikipedia

    en.wikipedia.org/wiki/Stratified_sampling

    A real-world example of using stratified sampling would be for a political survey. If the respondents needed to reflect the diversity of the population, the researcher would specifically seek to include participants of various minority groups such as race or religion, based on their proportionality to the total population as mentioned above.

  5. Weighted median - Wikipedia

    en.wikipedia.org/wiki/Weighted_median

    The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures , the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal.

  6. Arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_mean

    A weighted average, or weighted mean, is an average in which some data points count more heavily than others in that they are given more weight in the calculation. [6] For example, the arithmetic mean of 3 {\displaystyle 3} and 5 {\displaystyle 5} is 3 + 5 2 = 4 {\displaystyle {\frac {3+5}{2}}=4} , or equivalently 3 ⋅ 1 2 + 5 ⋅ 1 2 = 4 ...

  7. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies, different sample sizes may be allocated, such as in stratified surveys or experimental designs with multiple treatment groups.

  8. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    (The sample mean need not be a consistent estimator for any population mean, because no mean needs to exist for a heavy-tailed distribution.) A well-defined and robust statistic for the central tendency is the sample median, which is consistent and median-unbiased for the population median.

  9. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    where N is the population size, n is the sample size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively. These versions differ only in the factor in the denominator (N - 1). For a large N the difference is negligible.