Search results
Results From The WOW.Com Content Network
The problem is named after Flavius Josephus, a Jewish historian and leader who lived in the 1st century. According to Josephus's firsthand account of the siege of Yodfat, he and his 40 soldiers were trapped in a cave by Roman soldiers. They chose suicide over capture, and settled on a serial method of committing suicide by drawing lots.
NC = P problem The P vs NP problem is a major unsolved question in computer science that asks whether every problem whose solution can be quickly verified by a computer (NP) can also be quickly solved by a computer (P). This question has profound implications for fields such as cryptography, algorithm design, and computational theory.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
HackerRank categorizes most of their programming challenges into a number of core computer science domains, [3] including database management, mathematics, and artificial intelligence. When a programmer submits a solution to a programming challenge, their submission is scored on the accuracy of their output.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
This article says, “Josephus had an accomplice; the problem was then to find the places of the two last remaining survivors (whose conspiracy would ensure their survival). It is alleged that he placed himself and the other man in the 31st and 16th place respectively (for k = 3 below).”
An optimization problem asks for finding a "best possible" solution among the set of all possible solutions to a search problem. One example is the maximum independent set problem: "Given a graph G, find an independent set of G of maximum size." Optimization problems are represented by their objective function and their constraints.
The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.