When.com Web Search

  1. Ads

    related to: optimization calculus example problems

Search results

  1. Results From The WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  3. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework.

  4. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v, an optimization problem might be "find a path from u to v that uses the fewest edges". This problem might have ...

  5. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    On the other hand, if a constrained optimization is done (for example, with Lagrange multipliers), the problem may become one of saddle point finding, in which case the Hessian will be symmetric indefinite and the solution of + will need to be done with a method that will work for such, such as the variant of Cholesky factorization or the ...

  6. Regiomontanus' angle maximization problem - Wikipedia

    en.wikipedia.org/wiki/Regiomontanus'_angle...

    In mathematics, the Regiomontanus's angle maximization problem, is a famous optimization problem [1] posed by the 15th-century German mathematician Johannes Müller [2] (also known as Regiomontanus). The problem is as follows: The two dots at eye level are possible locations of the viewer's eye. A painting hangs from a wall.

  7. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.