Search results
Results From The WOW.Com Content Network
BIRCH (balanced iterative reducing and clustering using hierarchies) is an algorithm used to perform connectivity-based clustering for large data-sets. [7] It is regarded as one of the fastest clustering algorithms, but it is limited because it requires the number of clusters as an input.
The unsupervised equivalent of classification is normally known as clustering, based on the common perception of the task as involving no training data to speak of, and of grouping the input data into clusters based on some inherent similarity measure (e.g. the distance between instances, considered as vectors in a multi-dimensional vector ...
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.
Machine learning, the subset of artificial intelligence that teaches computers to perform tasks through examples and experience, is a hot area of research and development. Many of the applications ...
Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible.
Feature learning can be either supervised, unsupervised, or self-supervised: In supervised feature learning, features are learned using labeled input data. Labeled data includes input-label pairs where the input is given to the model, and it must produce the ground truth label as the output. [3]
Unsupervised classification (also known as clustering) is a method of partitioning remote sensor image data in multispectral feature space and extracting land-cover information. Unsupervised classification require less input information from the analyst compared to supervised classification because clustering does not require training data.