When.com Web Search

  1. Ad

    related to: nets of 3 dimensional shapes

Search results

  1. Results From The WOW.Com Content Network
  2. Net (polyhedron) - Wikipedia

    en.wikipedia.org/wiki/Net_(polyhedron)

    The number of combinatorially distinct nets of -dimensional hypercubes can be found by representing these nets as a tree on nodes describing the pattern by which pairs of faces of the hypercube are glued together to form a net, together with a perfect matching on the complement graph of the tree describing the pairs of faces that are opposite ...

  3. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Net In geometry , the Rhombicosidodecahedron is an Archimedean solid , one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces . It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices , and 120 edges .

  4. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    For example, a polygon has a two-dimensional body and no faces, while a 4-polytope has a four-dimensional body and an additional set of three-dimensional "cells". However, some of the literature on higher-dimensional geometry uses the term "polyhedron" to mean something else: not a three-dimensional polytope, but a shape that is different from ...

  5. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    Nets of a cube. An elementary way to construct a cube is using its net, an arrangement of edge-joining polygons constructing a polyhedron by connecting along the edges of those polygons. Eleven nets for the cube are shown here. [24] In analytic geometry, a cube may be constructed using the Cartesian coordinate systems.

  6. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    They form three of the four Kepler–Poinsot polyhedra. They are the small stellated dodecahedron {5/2, 5}, the great dodecahedron {5, 5/2}, and the great stellated dodecahedron {5/2, 3}. The small stellated dodecahedron and great dodecahedron are dual to each other; the great stellated dodecahedron is dual to the great icosahedron {3, 5/2}.

  7. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Edge, a 1-dimensional element; Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and ...

  8. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  9. Regular polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_polytope

    In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry.In particular, all its elements or j-faces (for all 0 ≤ j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.