Search results
Results From The WOW.Com Content Network
Ultraviolet astronomy is the observation of electromagnetic radiation at ultraviolet wavelengths between approximately 10 and 320 nanometres; shorter wavelengths—higher energy photons—are studied by X-ray astronomy and gamma-ray astronomy. [1] Ultraviolet light is not visible to the human eye. [2]
The theory of renormalization group is based on this paradigm. The short-distance, ultraviolet (UV) physics does not directly affect qualitative features of the long-distance, infrared (IR) physics, and vice versa. [1] This separation of scales holds in quantum field theory.
The diffuse extragalactic background light (EBL) is all the accumulated radiation in the universe due to star formation processes, plus a contribution from active galactic nuclei (AGNs). [1] This radiation covers almost all wavelengths of the electromagnetic spectrum , except the microwave, which is dominated by the primordial cosmic microwave ...
One of the studies, an experiment by physicist and oncology professor Jack TuszyĆski, Ph.D., used ultraviolet photons to create quantum reactions for up to five nanoseconds. This quantum ...
In theoretical physics, ultraviolet completion, or UV completion, of a quantum field theory is the passing from a lower energy quantum field theory to a more general quantum field theory above a threshold value known as the cutoff. In particular, the more general high energy theory must be well-defined at arbitrarily high energies.
Successful resolution of an ultraviolet divergence is known as ultraviolet completion. If they cannot be removed, they imply that the theory is not perturbatively well-defined at very short distances. The name comes from the earliest example of such a divergence, the "ultraviolet catastrophe" first encountered in understanding blackbody radiation.
The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century and early 20th century classical physics that an ideal black body at thermal equilibrium would emit an unbounded quantity of energy as wavelength decreased into the ultraviolet range.
The theory of BBN gives a detailed mathematical description of the production of the light "elements" deuterium, helium-3, helium-4, and lithium-7. Specifically, the theory yields precise quantitative predictions for the mixture of these elements, that is, the primordial abundances at the end of the big-bang.