Search results
Results From The WOW.Com Content Network
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
Raster graphic image. In computer graphics, rasterisation (British English) or rasterization (American English) is the task of taking an image described in a vector graphics format (shapes) and converting it into a raster image (a series of pixels, dots or lines, which, when displayed together, create the image which was represented via shapes).
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
An extension to the original algorithm called the midpoint circle algorithm may be used for drawing circles. While algorithms such as Wu's algorithm are also frequently used in modern computer graphics because they can support antialiasing, Bresenham's line algorithm is still important because of its speed and simplicity.
A raster scan, or raster scanning, is the rectangular pattern of image capture and reconstruction in television. By analogy, the term is used for raster graphics , the pattern of image storage and transmission used in most computer bitmap image systems.
Given a raster of square pixels, this leads to every square containing a part of the line being colored. A generalization of 4-connected line drawing methods to three dimensions is used when dealing with voxel grids, for example in optimized ray tracing , where it can determine the voxels that a given ray crosses.
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.