Search results
Results From The WOW.Com Content Network
Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If A is an m × n matrix and B is an n × p matrix, then their matrix product AB is the m × p matrix whose entries are given by dot product of the corresponding row of A and the corresponding ...
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
rank(A) = the maximum number of linearly independent rows or columns of A. [5] If the matrix represents a linear transformation, the column space of the matrix equals the image of this linear transformation. The column space of a matrix A is the set of all linear combinations of the columns in A. If A = [a 1 ⋯ a n], then colsp(A) = span({a 1 ...
Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" ( AoS ), in which all the elements for a given column are stored contiguously in memory.
A matrix of scores which express the similarity between two data points: Sequence alignment: Sylvester matrix: A square matrix whose entries come from the coefficients of two polynomials: The Sylvester matrix is nonsingular if and only if the two polynomials are coprime to each other Symplectic matrix: The real matrix of a symplectic transformation
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is sometimes more useful than the ...
It can be used not only to remove the mean of a single vector, but also of multiple vectors stored in the rows or columns of an m-by-n matrix . The left multiplication by C m {\displaystyle C_{m}} subtracts a corresponding mean value from each of the n columns, so that each column of the product C m X {\displaystyle C_{m}\,X} has a zero mean.
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]